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1 Introduction

With low fertility rates prevailing in most developed countries, the populations age fast,

and this entails a high demand for health care. If the health care cost is borne only by formal

health care, then eventually there may be a point at which the health care system ceases

to be sustainable. If formal health care can be replaced to some extent by informal family

health care, then this may lead to a considerable reduction on the formal health care cost.

In the literature of health economics, there are studies that examined the effects of

informal health care on formal health care, which often find that informal care substitutes

for formal care. Although there are studies such as Charles and Sevak (2005) showing that

informal care (dummy for any informal care) is a substitute for nursing home care (dummy

for ever staying in nursing home), in the following, we briefly review three studies that are

the most relevant to our paper: Van Houtven and Norton (2004), Bolin et al. (2008) and

Bonsang (2009).

In Van Houtven and Norton (2004), informal care is the care hours provided by all

children (their spouse and their children), and formal cares including nursing home care and

outpatient care are of eight different types in total (mostly continuously distributed, but

home health care and outpatient surgery are binary). About 19% of the respondents received

informal care. Van Houtven and Norton used U.S. data: 1998 Health and Retirement Survey

(HRS) and 1995 Asset and Health Dynamics Among the Oldest-Old Panel Survey (AHEAD).

Van Houtven and Norton found that informal care is mostly a substitute except for outpatient

surgery.

In Bolin et al. (2008), nine different formal care variables are used including formal home

care, visits to doctors and hospitalization days. For informal care, they used the informal care

hours from children and grandchildren, and its non-zero proportion ranged 19-40% across the

countries in the data (2004 European data “SHARE”). Bolin et al. found that informal care

is a substitute for formal home care, but a complement to doctor and hospital visits, and

that the effects vary depending on the region (i.e., informal care interacts with the region

dummies).

In Bonsang (2009), informal care is the care hours by children of the respondent (a

single-living elderly), and formal cares are paid domestic help (low-skilled) and nursing care

(high-skilled); both formal cares are home cares. Using the 2004 European data SHARE,
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Bonsang (2009) found that informal care is a substitute for the low-skilled formal home care,

but a weak complement for the high-skilled formal home care, and that the substitution effect

decreases as the level of disability of the elderly person increases (i.e., informal care interacts

with the disability level).

In terms of methods, Van Houtven and Norton (2004), Bolin et al. (2008) and Bon-

sang (2009) used a ‘two-part approach’. But strictly speaking, the methods used there to

deal with endogenous regressors apply only when the endogenous regressors are continuously

distributed. Probably because of this restriction, least squares estimator (LSE) was used to

estimate the reduced form model for informal care that is an endogenous regressor for formal

care. But the LSE is problematic as informal care variables include many zeros. As instru-

ments for informal care, distances to children, placement of daughters in the birth order, or

the number of (female) children have been used.

One reason for the endogeneity of informal care is that both formal and informal cares

may be determined simultaneously. Another reason is that both cares may share common

factors–most notably, health status. But controlling for health status is troublesome, as

it may be influenced by both cares. Added to this is the aforementioned problem of too

many zeros and the fact that the endogenous and response variables are not continuously

distributed, but discrete or mixed (discrete and continuous).

While there is no particularly good solution for the endogeneity problem, this paper will

show a two-stage procedure to overcome the problems of too many zeros in a non-negative

endogenous regressor (informal care) and the non-trivial proportion of zeros in the response

variable at zero (formal care). For non-negativity, we will be using ‘Quasi Poisson’ approach,

and for too-many zeros, we will be using the zero-inflated Poisson idea of Lambert (1992).

In a nutshell, our two-stage procedure is applicable to censored models with non-negative

endogenous regressors including count variables where the endogenous regressors have too

many zeros.

The rest of this paper is organized as follows. Section 2 shows the details of the two-stage

procedure. Section 3 applies the estimator to Korean data to estimate the effect of informal

care on formal care, where informal care is the number of care givers (thus a count). Finally,

Section 4 concludes. A word on notation before proceeding further: ‘a q b|c’ denotes the

independence between a and b given c.
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2 Two-Stage Procedure

2.1 Model Assumptions

Suppose that y1 ≥ 0 is formal care, y2 ≥ 0 is informal care (a count), x1 is a k1 × 1

exogenous regressor vector relevant for the y1 structural form (SF) equation, and x is the

k × 1 system exogenous regressor vector for (y1, y2) that strictly includes x1. Observed are

(xi, y1i, y2i), i = 1, ..., N , which are iid across i.

Although we assumed y2 to be a count, our approach below also applies to a non-negative

y2. In view of the iid assumption, we will often omit the subscript i.

Assume that the observed y1 and y2 are generated from its latent versions y∗1 and y∗2 as

follows: for unknown parameters γy, γx, α and β, an error term ui and a binary variable qi,

y1i = max(0, y
∗
1i) with y∗1i = γyy2i + x01iγx + ui and u|x is symmetric around 0;

y2i = qiy
∗
2i, P (q = 1|xi) =

exp(x0iα)

1 + exp(x0iα)
and E(y∗2|q = 1, xi) = exp(x0iβ).

In this model, y∗1 is modelled as censored from below at zero with its error term symmet-

ric around zero; this symmetry assumption is to use symmetrically censored least squares

estimator (SCL) of Powell (1986) for y1, and may be replaced by another semiparametric

assumption if a different semiparametric estimator as in Powell (1984) or Lee (1992) for the

zero-censored model is used.

Some remarks about the model are in order. First, a sample selection model holds for

y∗2 because y
∗
2 is observed only when q = 1; the binary ‘selection variable’ q is assumed to

follow the logit model whereas y∗2 given q = 1 is posited to have an exponential regression

function. Second, a key implication of the selection model for y2 is

E(y2|x) = P (q = 1|x)E(y∗2|q = 1, x) =
exp(x0α)

1 + exp(x0α)
exp(x0β).

Third, it may be better to model y1 also as a sample selection model rather than the censored

model (the censored model is a special case of selection model), but the censored model is

adopted for simplicity because dealing with a sample selection model is difficult–this may

not matter much though as the proportion of zeros is low for y1 in our data (14%). Fourth,

since the system regressor x appears for q and y∗2, the q and y
∗
2 equations should be regarded

as ‘reduced forms (RF)’. This RF view is necessary because y1 does not appear for the q and
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y∗2 equations (as if y1 has been substituted out), and also because E(y
∗
2|q = 1, x) = exp(x0β)

is adopted, not the more “structural” E(y∗2|x) = exp(x0β).

Define 1[A] = 1 if A holds and 0 otherwise, and call y∗2 = 0 ‘participation zero’. As

done in Lee (2011), it is helpful to compare three different models for q in relation to the

participation zero possibility:

Model 1 : q = 1[y∗2 > 0] where y2 (= qy∗2) = 0 implies y
∗
2 = 0;

Model 2 : q determined by some variables (and y∗2) with participation 0 possible;

Model 3 : q determined by some variables (and y∗2) with no participation 0 (y
∗
2 > 0 always).

Model 1 is the ‘corner solution model’ in which case y2 becomes also a zero-censored model

as y1 is. Model 2 is relevant if q = 1 is only an “attempt/try” for an activity and y∗2 is

a “performance” in the activity following the attempt/try. Model 3 is relevant if q = 1 is

having the actual activity and y∗2 is the degree of the activity with zero ruled out.

For instance, q = 1 may be an attempt/try to export, where y∗2 = 0 is possible even if

one tries (q = 1). Instead of attempt/try, one may define q = 1 as actually exporting and

y∗2 as the actual export volume that cannot be zero. Which one between Models 2 and 3 to

adopt may depend on what is available in the data. If a variable for ‘whether one desires

to export or not’ is available in the data along with the export volume including zero, then

y2 = qy∗2 is the observed export volume with y
∗
2 = 0 possible. If only the actual export volume

including zero without such a variable for q is available in the data, then one has no choice

but to set q = 1[y2 > 0] (6= 1[y∗ > 0]), in which case q = 1⇐⇒ y2 > 0 with no participation

zero possible. In our data, since there is no separate variable for q, we will set q = 1[y2 > 0]

to adopt Model 3

One may wonder ‘why not adopt Model 1 that looks simpler than Model 3’. The answer

is that there is really no difference between Model 1 and Model 3 for our empirical analysis.

Suppose y∗2 = x0α+ v2 with v2 being logistic independently of x and Model 1 holds. Then

q = 1[y∗2 > 0] = 1[x
0α+ v2 > 0] =⇒ E(q|x) = exp(x0α)

1 + exp(x0α)
and

E(y∗2|q = 1, x) = E(y∗2|y∗2 > 0, x) = x0α+E(v2|v2 > −x0α, x) 6= exp(x0α).

In this case, the exponential model is only an approximation for x0α+ E(v2|v2 > −x0α, x),

and consequently we need to allow different parameters α for E(q|x) and β for E(y∗2|q = 1, x)

as when Model 3 is adopted.
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2.2 First Stage To Obtain Control Function

In our two-stage procedure, the first stage consists of two parts: estimating α in the logit

model for E(q|x) and estimating β in the exponential model for E(y∗2|q = 1, x). For the latter,

one can use Quasi-Poisson (QPOI) maximum likelihood estimator (MLE): maximize the

usual Poisson likelihood function with q = 1 attached to use the “sandwich-form” asymptotic

variance. That is, the QPOI maximand is

1

N

X
i

qi{y2ix0ib− exp(xib)} ( =
1

N

X
i

qi{y∗2ix0ib− exp(xib)} )

and the asymptotic variance matrix is

E−1{qxx0 exp(x0β)} ·E[qxx0{y − exp(x0β)}2] ·E−1{qxx0 exp(x0β)}.

Denoting the first-stage estimators as α̂ and β̂, the second-stage is estimating γy and γx

for the y1 SF allowing for the endogeneity of y2 in the y1 SF. As reviewed in Lee (2012), there

are several different methods to deal with an endogenous regressor in a limited dependent

variable (LDV) model–the LDV model is the zero-censored model for y1 in our case. Among

those methods, the most convenient for our empirical analysis is ‘control function (CF)’

approach, because many interaction terms between y2 and elements of x will be used. With

the endogeneity of y2 removed by a CF, we can freely allow such interaction terms, which is

complicated in the other approaches for the y2 endogeneity. Specifically, a residual v̂2 for y2

is obtained from the first stage, and it is used as an extra regressor in the y1 SF. Not just

v̂2, but also v̂22 and v̂32 (or higher-order terms) can be used if including those terms removes

the y2 endogeneity better by accounting for the additive part of u that depends on v2. Then

(v̂2, v̂
2
2, v̂

3
2) becomes the CF, and the y2 endogeneity can be tested by looking at whether their

coefficients are all zero or not.

For an LDV regressor such as y2, it is not obvious which form of residual will be the best

choice for CF. For a count regressor, there is no “natural” residual. To motivate our approach

to this, consider generating a Poisson regressor y with the parameter exp(x0ξ + ε) where ε is

related to u so that y becomes endogenous for y1; e.g., u consists of ε and an additive error.

For such y, many exponential random variables with the same parameter exp(x0ξ+ ε) should

be generated first. Then the number of the exponential durations that can be fit into the

unitary time interval is the desired y–after this, y1 can be generated using (x and) y and u
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that depend on ε. For the endogenous y, at least the following two types of residuals can be

thought of.

The ‘additive residual’ for y is y − exp(x0ξ), from which it follows that

E{y − exp(x0ξ) |x} = E[ E{y − exp(x0ξ)|ε, x} |x] = E[ exp(x0ξ)eε − exp(x0ξ) |x]

= E[exp(x0ξ) · (eε − 1) |x] = 0

which holds by rescaling ε such that eε = 1 and including the constant scale factor in the

intercept of x0ξ. That is, using y− exp(x0ξ) amounts to using exp(x0ξ)(eε− 1) as a CF in the

y1 SF. If ε is small, then

exp(x0ξ)(eε − 1) ' exp(x0ξ) · ε.

A better choice than the additive residual might be the multiplicative residual y exp(−x0ξ)−1,

which leads to

E{y exp(−x0ξ)− 1 |x} = E[ E{y2 exp(−x0ξ)− 1|ε, x} |x] = E(eε − 1|x) = 0.

Hence, using y2 exp(−x0ξ)− 1 is analogous to using eε− 1 as a CF in the y1 SF. If ε is small,

then eε − 1 ' ε.

The main difference between the two residuals is that the additive residual carries the

heteroskedasticity factor exp(x0ξ) while the multiplicative residual does not. For y2 = qy∗2,

the two residuals are, respectively,

y2 −
exp(x0α)

1 + exp(x0α)
exp(x0β) and y2{

exp(x0α)

1 + exp(x0α)
exp(x0β)}−1 − 1.

For our empirical analysis, we will try both residuals, because which is better will be deter-

mined ultimately by how much endogeneity can be picked up by each type of residual; the

more the better.

Since SCL in the second stage needs only the symmetry of u|x, the only parametric

assumption invoked in our two-stage procedure is the logit in the first-stage. But since there

is no practical semiparametric estimator for binary responses, assuming logit does not seem

so restrictive. If we desire to avoid even the logit assumption, then we may assume simply

E(y2|x) = exp(x0β).

This will be also applied to our data later, and as it turn outs, its performance is inferior to

the two-stage procedure.
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2.3 Second Stage with Symmetrically Censored LSE (SCL)

In our two-stage procedure, the second-stage is SCL with a CF used as an extra regressor

to remove the y2 endogeneity. Here we explain SCL first, pretending that y2 is exogenous for

a while. To simplify notations, define

w ≡ (y2, x01)0 and γ ≡ (γy, γ0x)0.

to get y1i = max(0, w0iγ + ui).

Observe

w0γ + u ≥ 0 ⇐⇒ u ≥ −w0γ.

If w0γ > 0, then the censoring of y1 at zero replaces the lower tail of u with a “mass” −w0γ.

The idea of SCL is to replace the upper tail with w0γ to restore the symmetry of u. This

leads to a moment condition:

E{ 1[w0γ > 0] · (1[|u| < w0γ]u+ w0γ1[|u| ≥ w0γ]) · w} = 0.

A minimand with the moment condition as its asymptotic first order condition is

1

N

X
i

[ {y1i −max(0.5y1i, w0iγ)}2 + 1[y1i > 2w
0
iγ] · {(0.5y1i)2 − (max(0, w0iγ))2} ]

and SCL is obtained by minimizing this for γ.

If w0iγ '∞ ∀i, then the SCL minimand becomes the LSE minimand N−1P
i(y1i−w0iγ)2;

in fact, what is needed is only u > −w0γ (i.e., w0γ being large relative to the lower support

boundary of u|w) for which w0iγ '∞ is sufficient. The second-order (Hessian) matrix of SCL

is

H ≡ E(1[|u| < w0γ]ww0)

which becomes E(ww0) that is the second-order matrix of LSE when |u| < w0γ (implied by

w0γ '∞). If the censoring proportion becomes small, then SCL becomes close to LSE, and

in this sense, SCL is a natural estimator to use for censored responses with a small censoring

proportion. The main advantage of SCL over MLE’s for the censored model is that SCL does

not specify the distribution of u|w and allows an unknown form of heteroskedasticity because

the above moment condition does not require uq w.

Powell (1986) suggested an iterative scheme to get γ̂. Start with an initial estimate γ̂0,

say LSE, and then iterate the following until convergence:

γ̂ = (
X
i

1[w0iγ̂0 > 0] · wiw
0
i)
−1
X
i

{1[w0iγ̂0 > 0]min(y1i, 2w0iγ̂0) · wi}.
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This does not guarantee global convergence. Also the matrix to be inverted may not be

invertible. If this problem occurs, then removing 1[w0iγ̂0 > 0] in the inverted matrix may

help. From our experience, however, this algorithm works well.

Going back to the case with endogenous y2, let v2 be either the additive or multiplicative

residual from the y2 RF. Then the second-stage in our two-stage procedure is SCL with w

augmented by the CF v̂2 (v̂22 and v̂32). With the endogeneity of y2 removed by the presence

of the CF, SCL can be implement as above. The only modification needed is the asymptotic

variance of SCL because the first stage estimation errors α̂−α and β̂−β affect the asymptotic

variance through v̂2, which is to be examined in detail in the following subsection.

Our two-stage procedure works well computationally, because all estimators involved

(logit, QPOI and SCL) converge well. This computational advantage should not be down-

played as it matters greatly in practice. Initially a generalized method of moment with

E(v2|x) = 0 was tried to estimate α and β but then scrapped later, as its convergence

property was not so good.

2.4 Asymptotic Distribution

With w exogenous for y1, the first- and second-order derivatives of the SCL minimand

gives the following asymptotic linear expansion of SCL:

√
N(γ̂ − γ) =

1√
N

X
i

H−1 · 1[w0iγ > 0](1[|ui| < w0iγ]ui +w0iγ1[|ui| ≥ w0iγ])wi + op(1)

=
1√
N

X
i

H−1ζi + op(1), where ζi ≡ 1[w0iγ > 0](1[|ui| < w0iγ]ui +w0iγ1[|ui| ≥ w0iγ])wi.

From this, it follows that

√
N(γ̂ − γ) = N(0,H−1E(ζζ 0)H−1) where E(ζζ 0) = E{1[w0γ > 0]min(u2, (w0γ)2) · ww0}.

As already mentioned, in the two-stage procedure, the first-stage estimation errors α̂−α and

β̂ − β affect the SCL asymptotic variance through v̂2, which is discussed now.

Redefine w and γ as

w = (y2, x
0
1, v̂2, v̂

2
2, v̂

3
2)
0 and γ = (γy, γ

0
x, γ1, γ2, γ3)

0

where v̂2 = v̂2(α̂, β̂) that depends on α̂ and β̂ is either the additive or multiplicative residual,

and (γ1, γ2, γ3) is the coefficient vector for (v̂2, v̂
2
2, v̂

3
2).
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Recalling the above asymptotic linear expansion of SCL, the presence of the first-stage

estimators α̂ and β̂ matters for its ‘gradient vector’ ζ, but not for the second-order matrix

H. Hence write the asymptotic linear expansion as

√
N(γ̂ − γ) =

1√
N

X
i

H−1ζi(α̂, β̂) + op(1)

=
1√
N

X
i

H−1{ζi(α, β) +E(ζα0)ηαi +E(ζβ0)ηβi}+ op(1)

where ζα0 and ζβ0 denote the derivatives of ζ(α, β) for α and β, respectively, and ηαi and ηβi

are ‘influence functions’ for α̂ and β̂:

ηαi = {E(ss0)}−1si for logit score function si = {y2i −
exp(x0iα)

1 + exp(x0iα)
}xi,

ηβi = [E{qxx0 exp(x0β)}]−1qixi{y2i − exp(x0iβ)}.

Since the dimension of γ is (k1+4)× 1 and the dimension of α and β are both k× 1, ζα0 and

ζβ0 are (k1 + 4) × k matrices, which can be obtained by numerical differentiation. See, e.g.,

Lee (2010) for more details on this way of accounting for the first-stage estimation errors.

From the asymptotic linear expansion, it follows that

√
N(γ̂ − γ)Ã N(0,H−1E(λiλ

0
i)H

−1) where λi ≡ ζi(α, β) +E(ζα0)ηαi +E(ζβ0)λi.

E(λλ0) can be estimated consistently by replacing (α, β, γ) with (α̂, β̂, γ̂) and the expected

values in λ by the corresponding sample means. As already noted, if E(y2|x) = exp(x0β)

is adopted, then the only required change is redefining v2 without the logit probability and

then removing E(ζα0)ηαi in λ. The endogeneity of y2 can be tested using (γ̂1, γ̂2, γ̂3), as their

coefficients should be all zero under the null. It is convenient to note that, under the null,

the first-stage estimation errors α̂− α and β̂ − β can be ignored for SCL.

2.5 Details on Control Function

In practice, it may be enough for a CF to carry a significant estimate, and thus the

results under y2 exogeneity assumption differ much from those allowing y2 endogeneity. But

it would be more desirable to know what the CF looks like underneath and to justify it

properly. Here we take a detailed look at the CF under more assumptions.

For an error term ε related to u and a parameter vector β̃, assume

E(y∗2|q = 1, x, ε) = exp(x0β̃ + ε) and εq (x, q).
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This implies our earlier model assumptions

E(q = 1|x, ε) = P (q = 1|x) ( = exp(x0α)

1 + exp(x0α)
),

E(y∗2|q = 1, x) =
Z

E(y∗2|q = 1, x, ε)f(ε|x, q = 1)dε = exp(x0β̃)
Z

eεf(ε)dε = exp(x0β)

where β differs from β̃ in that the intercept in β absorbs E(eε) = exp{lnE(eε)}.

The reason for the extra assumption on E(y∗2|q = 1, x, ε) can be seen in

E{y2 −
exp(x0α)

1 + exp(x0α)
exp(x0β) |x} = E[ E{y − exp(x0α)

1 + exp(x0α)
exp(x0β)|ε, x} |x]

= E[
exp(x0α)

1 + exp(x0α)
exp(x0β)eε − exp(x0α)

1 + exp(x0α)
exp(x0β) |x]

= E[
exp(x0α)

1 + exp(x0α)
exp(x0β) · (eε − 1) |x] = 0.

That is, using the additive residual CF amounts to using

exp(x0α)

1 + exp(x0α)
exp(x0β) · (eε − 1) {' exp(x0α)

1 + exp(x0α)
exp(x0β)ε if ε is small}.

Analogously, using the multiplicative residual CF amounts to using eε− 1 (' ε if ε is small).

In the above extra assumption, since we need to have exogenous y2, the relation of ε to u

should be the only source for the y2 endogeneity. A natural question to arise is how restrictive

the assumption ‘ε q (x, q)’ is. Literally, it is restrictive in requiring that the y2 endogeneity

source ε be independent of the selection equation q as well as of x. But ‘εq (x, q)’ does not

imply ‘q q y∗2|x’ that the selection equation q for y∗2 is independent of y2 given x. To see a

counter example, it is enough to think of generating an uniform random variable to use it

along with (x, ε) to generate both q and y∗2; through the same uniform random variable, q

and y∗2 become related.

2.6 Two-Part Approach in the Literature

It seems helpful to compare our two-stage procedure to the two-part approach in the

literature. The two-part approach assumed

first part : 1[y1 > 0] = 1[γyy2 + x01γx + u > 0] and y2 = x0δ + v

second part : y1 = ξyy2 + x01ξx + ei given y1 > 0

where δ and ξ are parameters, and v and e are error terms.
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For the first part, substitute y2i = x0iδ + vi to obtain

1[y1i > 0] = 1[γy(x
0
iδ + vi) + x0iSγx + ui > 0] = 1[x

0
iψ + γyvi + ui > 0]

where ψ ≡ γyδ + Sγx and S consists of 0’s and 1’s such that x01 = x0S.

Note that ψ is the RF parameters for 1[y1 > 0] while (γy, γx) is the SF parameters. For

the endogeneity of y2 in the first part, a CF approach combined with minimum distance

estimator (MDE) was used: the LSE residual v̂ for the y2 equation is used along with x to

obtain (ζ̂, γ̂y), and then (δ, γx) is estimated by MDE using ψ̂ = γ̂yδ + Sγx–simply imagine

LSE of ψ̂ on (γ̂y, S) to estimate (δ, γx).

Some remarks on the two-part approach are in order. First, (δ, γx) can be estimated in

the 1[y1 > 0] SF with v̂ controlled; no MDE is needed. Second, the linear model for y2 is not

plausible as y2 has many zeros. Third, the second part of the two-part approach has been

“sold” (relative to sample selection models) for a better prediction of y1; hence the second

part is not suitable to allow for endogenous regressors.

3 Empirical Analysis

Our data was drawn from the elderly of age 65 or above in ‘the Korean Longitudinal

Study of Ageing’ for the year 2008. The information on the variables can be found in Table 1.

In Table 1, ‘formal’ is the annual medical and long-term care expenditure in about $1000–

the other amounts in the table are all annual amounts in the same unit. The number of care

givers is our informal family care variable, 85% of which are zeros. Table 1 also shows yearly

informal care hours (‘care hours’) of which 85% are zeros again, but this variable will not

be used for y2–the estimation results with care hours as y2 is mostly insignificant with no

endogeneity of y2 picked up by the CF’s.

‘fi. asset’ is financial asset amount, and ‘real est.’ is real asset amount. ‘own house’

is the dummy for owning a house. ‘fam.inc.’ is household income, and pension is pension

and other welfare receipt amount. ‘hi.bl. pressure’ is the dummy for high blood pressure.

‘cancer/tumor’ is the dummy for cancer or malign tumor. ‘chronic pulmo.’ is the dummy for

chronic pulmonary disease. ‘chronic liver’ is the dummy for chronic liver disease. ‘cerebral

bl.vessel’ is the dummy for cerebral blood vessel disease. ‘arthritis/rheuma.’ is the dummy

for arthritis or rheumatism. ‘male’ is the dummy for being male’, ‘Seoul’ is the dummy for
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living in Seoul, and ‘work’ is the dummy for working. ‘kid-par’ is the transfer amount from

children to the parents. ‘nkids’ is the number of children and ‘nfem.kids’ is the number of

female children. ‘nkids-co’ is the number of children cohabiting with the respondent, and

‘nkids-act’ is the number of children economically active. ‘nkids-30’ is the number of non-

cohabiting children living in 1-30 minutes’ distance by public transportation; nkids-60 and

nkids-120 are analogously defined for 31-60 minutes and 61-120 minutes, respectively. ‘#

generations’ is the number of generations living together.

Table 1: Descriptive Statistics

Variable Mean (SD) Min,Max Variable Mean (SD) Min,Max

formal ($1,000) 1.179 (2.34) 0, 48.4 age 74.6 (6.12) 65, 107

# care givers 0.215 (0.58) 0, 4 male 0.425 (0.494) 0, 1

care hours 157 (619) 0, 8760 married 0.636 (0.481) 0, 1

fi. asset ($1,000) 4.88 (21.6) 0, 500 Seoul 0.137 (0.343) 0, 1

real est. ($1,000) 152 (222) 0, 2948 work 0.213 (0.409) 0, 1

own house 0.409 (0.49) 0, 1 kid-par ($1,000) 13.5 (28.2) 0, 866

fam.inc. ($1,000) 16.3 (21.0) 0, 700

pension ($1,000) 1.42 (4.44) 0, 94.9 nkids 3.99 (1.61) 0, 10

hi.bl. pressure 0.091 (0.288) 0, 1 nfem.kids 1.92 (1.40) 0, 8

diabetes 0.048 (0.215) 0, 1 nkids-co 0.412 (0.56) 0, 3

cancer/tumor 0.013 (0.114) 0, 1 nfem.kids-co 0.092 (0.30) 0, 3

chronic pulmo. 0.016 (0.127) 0, 1 nkids-act 2.61 (1.41) 0, 8

chronic liver 0.005 (0.073) 0, 1 nfem.kids-act 0.765 (0.97) 0, 7

cardio disease 0.035 (0.183) 0, 1 nkids-30 0.597 (0.99) 0, 6

cerebral bl.vessel 0.038 (0.191) 0, 1 nkids-60 0.838 (1.18) 0, 6

mental disease 0.016 (0.125) 0, 1 nkids-120 0.768 (1.22) 0, 9

arthritis/rheuma. 0.195 (0.396) 0, 1 # generations 1.48 (1.06) 0, 4

To avoid extreme values in the amount variables, all amount variables are transformed

with ln(·+1) so that 0 remains 0 after the transformation and positive values remain positive

after transformation. Other than the variables in Table 1, self-reported health status is also

available in five categories. When health status was used for estimation, its coefficient was

significantly positive, implying that health status is likely to be affected by formal/informal
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care, and thus it cannot be used as a regressor. Although the children-related variables can

be used as instruments (IV) for y2, there is no good IV for health status. Hence health status

is dropped from the regressor list. By omitting health status, the endogeneity of y2 becomes

more likely.

Table 2: Logit and Quasi-Poisson for y2

Variables Logit (t-value) QPOI (t-value)

financial asset -0.034 (-1.53) -0.012 (-1.35)

real estate 0.011 (0.26) -0.007 (-0.41)

own hose -0.245 (-1.63) -0.107 (-1.84)

family income 0.057 (1.06) 0.031 (1.50)

pension 0.026 (0.91) -0.012 (-1.25)

age -0.068 (-0.45) 0.006 (0.10)

age2 0.109 (1.16) 0.000 (0.00)

male 0.661 (4.01) 0.029 (0.47)

married 0.119 (0.70) -0.025 (-0.31)

Seoul -0.707 (-3.68) 0.126 (1.91)

work -0.820 (-3.80) -0.109 (-1.40)

kid-par -0.052 (-2.54) -0.006 (-0.70)

nkids 0.225 (2.07) 0.024 (0.63)

nfem.kids -0.180 (-1.63) 0.003 (0.09)

nkids-co 0.097 (0.60) 0.084 (1.36)

nfem.kids-co 0.349 (1.74) 0.057 (0.89)

nkids-act -0.150 (-1.47) -0.028 (-0.74)

nfem.kids-act 0.010 (0.08) -0.127 (-2.75)

nkids-30 0.040 (0.60) 0.046 (2.05)

nkids-60 0.022 (0.41) 0.049 (2.43)

nkids-120 -0.033 (-0.55) -0.009 (-0.42)

# generations 0.227 (2.92) 0.050 (1.64)

Table 2 ‘Logit and Quasi-Poisson for y2’ presents the estimates for the first-stage. Since

most disease variables are highly significant but of no direct interest, we omit their results

in Table 2 and the remaining tables to simplify presentation; also omitted are the intercept
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estimates. In Table 2, age2/100 (‘age2’) is used. The main variable of interest are the children-

related variables as they are the IV’s for y2 and thus should be significant in explaining y2.

‘nkids’ and # generations are significant for logit, whereas nfem.kids-act, nkids-30 and nkids-

60 are significant for QPOI.

Table 3: SCL, CFE-additive and CFE-multiplicative for y1

Variables SCL (tv) CFEa (tv2, tv1) CFEm (tv2, tv1)

y2 2.135 (2.40) 1.172 (0.98, 1.05) 1.757 (0.16, 1.71)

y2×hi.bl. pressure -0.275 (-2.08) -0.162 (-1.11, -1.14) -0.248 (-0.28, -1.81)

y2×diabetes -0.686 (-3.81) -0.668 (-3.56, -3.68) -0.673 (-0.52, -3.68)

y2×mental disease -0.605 (-1.88) -0.461 (-1.42, -1.50) -0.575 (-0.86, -1.77)

y2×arthritis/rheuma. 0.125 (0.83) 0.123 (0.79, 0.80) 0.133 (0.19, 0.88)

y2×age -0.026 (-2.32) -0.020 (-1.65, -1.70) -0.022 (-0.19, -1.78)

y2×male 0.191 (1.21) 0.237 (1.41, 1.45) 0.201 (0.39, 1.28)

financial asset 0.047 (3.42 ) 0.046 (3.29, 3.31) 0.047 (2.81, 3.40)

real estate 0.159 (4.64) 0.159 (4.71, 4.76) 0.158 (3.81, 4.62)

own hose -0.029 (-0.30) -0.046 (-0.44, -0.44) -0.032 (-0.28, -0.32)

family income 0.001 (0.03) 0.009 (0.27, 0.27) 0.001 (0.03, 0.05)

pension 0.068 (3.48) 0.068 (3.52, 3.52) 0.068 (3.03, 3.50)

age 0.378 (2.29) 0.348 (2.40, 2.43) 0.380 (1.44, 2.31)

age2 -0.262 (-2.43) -0.239 (-2.49, -2.53) -0.263 (-1.50, -2.45)

male -0.136 (-1.15) -0.115 (-0.93, -0.94) -0.137 (-1.05, -1.16)

married 0.093 (0.91) 0.088 (0.86, 0.86) 0.091 (0.65, 0.89)

Seoul -0.006 (-0.05) -0.031 (-0.24, -0.25) -0.006 (-0.04, -0.05)

work -0.184 (-1.63) -0.213 (-1.83, -1.84) -0.187 (-1.46, -1.65)

kid-par 0.026 (1.78) 0.023 (1.48, 1.49) 0.026 (1.41, 1.77)

v̂2 0.414 (0.97, 1.10) 0.027 (0.03, 0.74)

v̂22 0.230 (1.85, 2.00) -0.001 (0.00, -0.85)

v̂32 -0.069 (-2.06, -2.19) 0.000 (0.00, 1.10)

Table 3 presents the main estimation results where ‘tv’ stands for t-value, CFEa is the

estimator with the additive error for CF, CFEm is the estimator with the multiplicative error

for CF, and ‘tv2’ is the correct t-value taking into account the first-stage estimation errors
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whereas ‘tv1’ is the t-value ignoring the first-stage estimation errors (correct only under the

null of no y2 endogeneity). For the sake of comparison, we show the SCL results ignoring the

y2 endogeneity in the first column, although we will not interpret the results.

Comparing CFEa and CFEm in Table 3, CFEm does not pick up the y2 endogeneity

as the CF (v̂2, v̂22, v̂
3
2) are all insignificant–the Wald test for H0 : γ1 = γ2 = γ3 = 0 is not

rejected. In contrast, CFEa does pick up the y2 endogeneity, which results in appreciable

differences between SCL and CFEa in the estimates involving y2. In the CFEa column,

among the terms involving y2, only the interaction term with diabetes is significant with a

large effect estimate; there is also weak evidences that y2 interacts with mental disease, age

and male.

Also notable in the CFEa column of Table 3 is that tv2 and tv1 are not much different:

there is no reversal of statistical significance except for v̂22 where tv2 is 1.85 while tv1 is 2.00.

In contrast, tv2 and tv1 are much different in CFEm, particularly for the variables involving y2

and v̂2. This might be due to the division of y2 by the regression function for the multiplicative

residual, as this might result in too big numbers and consequently some numerical instability.

The poor performance of CFEm relative to CFEa is somewhat surprising, given the intuitive

appeal of the multiplicative residual in the exponential model. This might be attributed to

two factors: the just mentioned numerical instability, and u containing the heteroskedastic

factor present in the additive residual, but not in the multiplicative residual.

Table 4 presents the estimation results under E(y2|x) = exp(x0β) which does away with

logit. In Table 4, neither CFEa nor CFEm pick up the y2 endogeneity in view of the t-values

for the CF’s. As the result, the estimates and t-values of CFEa and CFEm are not much

different from those of SCL which ignores the y2 endogeneity. As in Table 3, tv2 and tv1 are

little different in CFEa, whereas they are substantially different for CFEm, particularly for

the variables involving y2 and v̂2.

Although not shown, we also tried the ‘logit-only first stage’ just to see which part be-

tween logit and QPOI contributes more. The results for the mean squared error N−1P
i(y2i−

ŷ2i)
2 where ŷ2i is the estimated E(y2|x) are, respectively, 0.284 (QPOI only), 0.283 (logit

only), and 0.271 (both QPOI and logit as in the main two-stage procedure). This shows

that most explanatory power for y2 comes from its binary aspect and the positive values

contribute only a little.

16



Table 4: SCL, CFE-additive and CFE-multiplicative for y1: No Logit

Variables SCL (tv) CFEa (tv2, tv1) CFEm (tv2, tv1)

y2 2.135 (2.40) 1.816 (1.40, 1.57) 1.413 (0.55, 1.31)

y2×hi.bl. pressure -0.275 (-2.08) -0.250 (-1.71, -1.80) -0.223 (-0.49, -1.62)

y2×diabetes -0.686 (-3.81) -0.674 (-3.67, -3.78) -0.680 (-0.94, -3.63)

y2×mental disease -0.605 (-1.88) -0.620 (-1.90, -1.88) -0.550 (-1.03, -1.68)

y2×arthritis/rheuma. 0.125 (0.83) 0.131 (0.82, 0.85) 0.146 (0.26, 0.96)

y2×age -0.026 (-2.32) -0.025 (-2.00, -2.05) -0.019 (-0.69, -1.48)

y2×male 0.191 (1.21) 0.195 (1.15, 1.18) 0.216 (0.53, 1.37)

financial asset 0.047 (3.42) 0.047 (3.35, 3.37) 0.047 (3.13, 3.41)

real estate 0.159 (4.64) 0.159 (4.55, 4.60) 0.158 (4.49, 4.72)

own hose -0.029 (-0.30) -0.033 (-0.32, -0.33) -0.032 (-0.30, -0.33)

family income 0.001 (0.03) 0.004 (0.11, 0.11) 0.002 (0.07, 0.07)

pension 0.068 (3.48) 0.069 (3.52, 3.53) 0.068 (3.23, 3.50)

age 0.378 (2.29) 0.362 (2.03, 2.08) 0.372 (1.77, 2.25)

age2 -0.262 (-2.43) -0.250 (-2.11, -2.17) -0.258 (-1.85, -2.38)

male -0.136 (-1.15) -0.132 (-1.08, -1.09) -0.139 (-1.11, -1.18)

married 0.093 (0.91) 0.097 (0.94, 0.94) 0.090 (0.78, 0.88)

Seoul -0.006 (-0.05) -0.015 (-0.12, -0.12) -0.009 (-0.06, -0.07)

work -0.184 (-1.63) -0.199 (-1.65, -1.70) -0.185 (-1.58, -1.62)

kid-par 0.026 (1.78) 0.025 (1.58, 1.62) 0.026 (1.53, 1.75)

v̂2 0.183 (0.37, 0.50) 0.074 (0.10, 1.47)

v̂22 0.102 (0.92, 1.50) -0.005 (0.00, -1.58)

v̂32 -0.027 (-0.80, -1.44) 0.000 (0.00, 1.76)

4 Conclusions

This paper examined whether informal health care can reduce formal health care, where

the formal care y1 is medical and long-term care expenditures (14% zeros) and the informal

care y2 is the number of family care givers (85% zeros). This task posed a number of diffi-

culties, because y2 is an endogenous regressor that is a count variable with too-many zeros,

in addition to y1 having a non-trivial proportion of zeros.
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Facing the difficulties, we proposed a two-stage procedure where the first stage is esti-

mating E(y2|x) as the product of logit (using y2 being positive or not) and an exponential

regression function (using only positive y2’s)–the idea borrowed from ‘zero-inflated Poisson’.

The second stage is applying a semi-parametric censored model estimator for y1 with the

endogeneity of y2 removed by a control function (CF). Two types of CF’s were considered:

one based on the additive residual y2 − E(y2|x), and the other based on the multiplicative

residual y2/E(y2|x)− 1; the actual CF used was polynomial functions of these residuals.

Despite the intuitive appeal of the multiplicative residual as an exponential function

appears, the additive residual CF approach performed much better than the multiplicative

residual CF approach. Also, using only an exponential function for E(y2|x) (i.e., ignoring

the too-many zero problem) was tried, but the outcome was inferior to the procedure with

both logit and exponential functions.

Our empirical result using Korean data for the elderly (of age 65 and above) showed

that informal care is a substitute only for certain cases such as diabetes. There are weak

evidences that informal care effect on formal care interacts also with mental disease, age and

male. That is, as noted in the literature of informal and formal care trade-off, the effect of

informal care on formal care is heterogeneous.
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